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A  comprehensive  Quality  by Design  development  paradigm  should  consider  the  impact  of raw  materials
and  formulation  on  the  final  drug  product.  This  work  proposes  a  quantitative  approach  to simultaneously
predict  particle,  powder,  and  compact  mechanical  properties  of  a pharmaceutical  blend,  based  on that
of the raw  materials.  A  new,  two-step,  multivariate  modeling  method,  referred  to  as  the  weighted  scores
vailable online 5 May 2011
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PLS,  was  developed  to address  the challenge  of  predicting  the  properties  of  a powder  blend  while  enabling
process  understanding.  The  model  validation  exercise  is  shown  along  with  selected  practical  applications.
It  is shown  how  the  proposed  in-silico  model  exhibits  sufficient  predictive  power  to  be  an  important  tool
in the pharmaceutical  development  decision  making  process  while  requiring  minimal  experimentation
and  material  usage.
lending

. Introduction

.1. A Quality by Design perspective

The pharmaceutical industry is undergoing a shift in the way
rug products and processes are being designed and operated. This
ransformation of the pharmaceutical development process is trig-
ered by the guidance documents released by the Food and Drug
dministration (FDA, 2000, 2009). These guidelines opened the
ption to design and validate a given process over a range of pro-
ess conditions, referred to as a design space, as opposed to a fixed
et of points. New drug application submissions wanting to take
dvantage of such an option are expected to provide evidence that
he established design space will yield a product with safety and
fficacy for the patient. This concept is widely known as Quality
y Design (QbD). In principle, the scientific evidence required for

 QbD submission would provide an understanding of the driving
orces acting upon the complex network of interactions between

aterials, process, and drug product.
An important point to consider in a QbD exercise is how the

aw material attributes impact a given process. This is especially
rue since QbD principles imply that quality should be built into

he process through an upstream design approach, rather than by
own-stream troubleshooting. As the choice of formulation is the

nitial design space decision, it is important to have a comprehen-
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sive approach for selecting appropriate materials. Therefore, a QbD
development project should consider the choice of excipients that
are to be mixed with the active pharmaceutical ingredient (API)
into the final drug product as an added degree of freedom. Multiple
aspects of this decision should be considered. Specifically, the effect
of the materials selected on the safety (e.g. chemical stability API),
efficacy (e.g. impact on a drug release profile) and processability of
the drug product (Hamad et al., 2010).

This work addresses the latter problem through a quantitative
model that predicts the impact of the initial materials on the pow-
der, flow, and mechanical properties for a blended formulation. This
model is a key step towards enabling the in-silico design of the drug
product by including material selection as a decision variable.

1.2. Modeling of mixtures from pure component properties

In general, modeling and predicting the output of mixing mul-
tiple individual components is a common problem in the scientific
arena. Often products do not conform to simple ideal mixing rules
and therefore require more sophisticated techniques. For example,
extensive research in thermodynamics has addressed the effect on
non-ideal mixing of liquids and gasses (Smith et al., 2005). Also,
more fundamental mixing theories have been developed in the
design of alloys in the metal and semiconductor field (Kumar, 2003)
and to the design of advanced polymers (Bernardo et al., 1996;

Kolarik et al., 2000). One method to address mixture modeling is
to use group contributions; where the resulting properties of the
blend are calculated as a function of the contributing groups present
in each of the individual components. An example of this approach

dx.doi.org/10.1016/j.ijpharm.2011.04.064
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
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s the UNIQUAC and UNIFAC methods to calculate thermodynamic
roperties (Smith et al., 2005). In the pharmaceutical field, Cao
t al. (2008),  used element and ion volume contributions methods
o predict the true density of active pharmaceutical ingredients.
lso, organic structural group contributions were used to predict

he refractive index of pharmaceutical solids (Cao et al., 2009).
For pharmaceutical powder blend prediction, black-box models,

ike expert systems (Shao et al., 2007), neural networks (Takayama
t al., 2003; Kachrimanis et al., 2003), and neuro-fuzzy logic (Shao
t al., 2007) have been proposed. However, most of these pro-
osals do not go beyond an academic exercise and/or lack the
ransparency needed to understand the mechanics behind the pre-
iction. As such, the use of these black-box models is unacceptable
s part of a Quality by Design exercise which requires science-based
nderstanding of the system being modeled.

A more quantitative approach to predicting the properties of
 mixture is to use some simple mixing rules, such as weighted
verages of the properties of the individual ingredients (either
ass weighted, or volume weighted). This type of calculation

ssumes certain linearity in the mixture process. An example of this
pproach is the work by Wu et al. (2005, 2010),  where mixing rules
ere used in conjunction with ryskewitch-ductworth equations

i.e. a logarithmic mass weighted average) to predict the tensile
trength of multi-component mixtures of pharmaceutical powders.

Finally, the use of multivariate latent variable regression meth-
ds (MacGregor et al., 2005) has been applied to mixture modeling
f pharmaceutical powders. Particle size distribution (PSD) has
een shown to predict powder flow (Mullarney and Leyva, 2009)
ithin a partial least squares (PLS) regression framework. PSDs

long with particle shape information was used also used to
redict granule packing and flow behavior (Sandler and Wilson,
010). Finally, a weighted average of the properties of individual
omponents augmented with dry granulation process conditions
ere used within a PLS framework to predict selected granulation
roperties (Soh et al., 2008). These multivariate models have the
dvantage of providing understanding of the mechanics behind the
rediction which enables process understanding. For other appli-
ations of multivariate methods to pharmaceutical processes, the
eader is referred to the reviews by Workman et al. (2009) and
endrin et al. (2008).

The work presented herein combines the weighted averaging
f individual component properties (which we will refer to as
ideal-mixing”) with the application of multivariate models in a
ew, two-step, process. The weighted scores PLS (WSPLS) takes
cores from a principal component analysis (PCA) of individual
omponents and then weights them prior to PLS regression against
easured blend data. This WSPLS method is used to simultaneously

redict the resultant particle, powder, and compact mechanical
roperties of blends of pharmaceutical powders with minimal
xperimentation and API usage (<50 g). The predictive abilities of
he WSPLS model are contrasted with that of logarithmic weighted
verage.

. Materials and methods

.1. Dataset creation

Since 1996 the Pfizer Materials Assessment Laboratory (MAL)
as developed an extensive database of physical properties of phar-
aceutical powders. These data were gathered to create a blend

rediction model which is representative of the range of materi-

ls typically seen in solid dosage form development. The material
ypes in the database include individual excipients and active phar-

aceutical ingredients APIs, as well as formulated blends and
ranulations containing multiple components. The physical char-
Fig. 1. Structure of mixture modeling data.

acterization tests on the materials were performed in the powder
and compacted state to discern and estimate material performance
during processing. A subset of this database was gathered and used
to create a blend prediction model. This subset included material
properties from 64 excipients, 107 APIs, and 25 blends.

Examples of the powder-based material testing carried out
included powder PSDs using a Sympactec/Rodos laser diffraction
analyzer (Sympatec inc., Princeton, NJ), true densities via a helium
pycnometer (Quantachrome inc., Boynton Beach, FL) and flow func-
tion coefficient using a Schulze Ring-Shear Tester. (Schultz, 1996)
Several compact mechanical properties were also measured using
standard methods. These properties included compression stress
needed to achieve 0.85 solid fraction, compact tensile strength, and
compact ductility via dynamic and quasi-static compact indenta-
tion (Hancock et al., 2002; Hiestand, 2003; Mullarney et al., 2003).
Additionally, bonding/tableting indices (e.g. bonding index and
elastic modulus) were directly calculated from the above proper-
ties and were also included in this analysis.(Hiestand and Smith,
1984; Hiestand, 1997) The bonding/tableting indices were included
as they are known to capture interactions which have been deemed
important for performance understanding (Hiestand, 1995). A com-
plete list of the variables used in this effort are shown in Table 1.
While all of these properties were included in the construction of
the blend-prediction model presented herein, this report will focus
on a few core properties which are considered most important
for formulation design. These core properties, include compres-
sion stress, ductility, tensile strength (normal and compromised),
brittle fracture index (loss in tensile strength with compromised
compact), bonding index (tensile strength/ductility), viscoelastic-
ity (dynamic ductility/quasi-static ductility), powder flow function
coefficient, and particle size distribution. However, for a new blend,
the model will provide a prediction of every property in the dataset
which allows for the flexibility to focus on any material character-
istic that may  be important for a specific formulation or dosage
form.

The material data outlined above were collected for individual
excipients and APIs, as well as blends of both placebo and active
formulations. The data were organized into an “L-shaped” mixture-
modeling structure as shown in Fig. 1. The “X” matrix contains the
properties of the individual materials (excipients and APIs). The
“R” matrix consists of the mixing ratios that represent the compo-
sitions of each blended formulation. Finally, the “Y” matrix contains
the physical property data for the tested blends. In order to create
an appropriate dataset that adequately characterized the formula-
tions, the dataset was refined using the following procedures.
• Materials in a blend were matched to the raw ingredients by lot
number whenever possible. If a direct match by lot number was
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Table 1
Material properties used in blend prediction.

Property type (measurement system) Parameter Units

Particle size (Laser Diffraction) Full particle size distribution (48 size regimes) �m
Powder density (He Pycnometer) Absolute density (g/cc)
Powder flow (Schultz Ring-Shear Tester) Flow function coefficient (FFC) None
Compact mechanical properties and bonding
indices

Compact solid fraction (SF) None
Compression stress (CS) MPa
Pendulum impact dent radius (PIDCR) cm
Dynamic indentation hardness (H0) MPa
Strain index (SI) NA
Reduced elastic modulus (REM) GPa
Quasi-static Indentation radius (QCR) cm
Quasi-static hardness (H10) Mpa
Shear modulus (SHEARM) GPa
Tensile strength (TSreg) MPa
Compromised tensile strength (TScomp) MPa
Brittle fracture index (BFI) None
Best-case bonding index (Bib) None
Worst-case bonding index (Biw) None

-visco
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not possible the ingredients were chosen using a material deemed
to be representative (i.e. an excipient of the same manufacturer
and grade).
Blends in “Y” that did not have >97% of ingredients appropriately
matched in “X” were removed.
Materials that were not characterized for particle size distribu-
tion using laser diffraction were removed as particle size is known
to have an important effect on many of the other material prop-
erties.
Materials with >30% missing data were removed.
Particle size distributions were transformed from a 48 variable
probability distribution by size to a quantile distribution with
200 variables.

ollowing these steps the dataset contained a total of 64 commonly
sed excipients, 103 APIs, and 25 blends (both placebo and active
ormulations) that were well characterized for mechanical, flow,
nd particle size characteristics. These data are representative of
aterials used in a wide variety of solid-oral dosage forms includ-

ng both immediate and controlled release as well as tablet and
apsule formulations.

.2. Modeling methods

A novel “Weighted-Scores PLS” (WSPLS) method was developed
hereby the X data structure was first transformed to the score

pace using principal component analysis (PCA). The scores (T) from
his PCA model Eq. (1) were then linearly weighted by the blending

atrix, R Eq. (2),  prior to PLS regression against the blend data, Y Eq.
3). In this case the data required special treatments according to
he testing method used. The APIs were all tested using smaller
0.5 g, 3/8′′ × 3/8′′ × 3/16′′) compacts compared to the excipients
5.0 g, 3/4′′ × 3/4′′ × 3/8′′) and this caused some differences between
he correlations within the two distinct populations. Therefore,
eparate PCAs were constructed for the APIs and excipients (six
rincipal components each). For each individual blend, the scores of
he excipients used in that blend were weighted and added accord-
ng to the corresponding row in R and this vector was concatenated

ith that of the scores of the API used in that blend (also weighted
y R). This collection of concatenated vectors is referred to as the

weighted scores”. These “weighted-scores” were then regressed
gainst the measured blend properties using a PLS.

 = TPT + εx (1)
elastic bonding index (bBIv) None
-viscoelastic bonding index (bBIvmod) None

 number (VENUM) None

t(n,a) =
∑

i

t(i,a)r(n,i) (2)

X = TPT + εX

Y = TQT + εY
(3)

The quantile particle size distribution (PSD) was multi-blocked
to ensure that the predictions would not be artificially biased due
to the relatively large number of variables (200). The weighting
of the PSD was  optimized by comparing the maximum average
of the captured variance with varying block weights (from 0 to
100% weighing of the PSD block). With all the PLS regressions
to the blend properties (Y) it was found that using 6 principal
components (PCs) captured the maximum variance in the dataset
without over-fitting. The model predictions were cross-validated
using jack-knifing, whereby each sample was iteratively removed,
the model was recalculated with the remaining samples, and the
removed sample was projected into the new model. The cross val-
idation term (Q2 value) was  calculated as a measure of the future
predictability of the model.

2.3. Prediction of properties of new blends

New blends, which were not part of the training set, can be pre-
dicted as long as each of the individual components of the blend
have been previously tested. For example, any additional API or
excipient can be added to the model without requiring the addi-
tion of a blend containing that material. Typically a new material
can be fully characterized for all of the required properties using
<50 g of material.

Predictions were performed on blends containing common
pharmaceutical excipients for immediate-release formulations and
two Pfizer proprietary APIs (API-A and API-B). A third Pfizer
API (API-C) was  used to illustrate how the WSPLS can be used
to guide formulation and process development with minimal
experimentation. The blends were composed of 2:1 wt.% ratios
of microcrystalline cellulose (Avicel PH102, FMC  Biopolymer,
Mechanicsburgh, PA) to lactose monohydrate (Fast Flow 316, Fore-
most Farms, Baraboo, WI)  for API-A and API-C formulations or
dicalcium phosphate (A-Tab, Innophos, Cranbury, NJ), for the API-
B formulation. All the above formulation also contained 3 wt.%

sodium starch glycolate (Explotab, JRS Pharma, Patterson, NJ) and
1 wt.% magnesium stearate (vegetable source, Mallinckrodt, Hazel-
wood, MO). These new formulations were not included in the model
training set used to construct the model. The predicted properties
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f these blends, including compact strength, powder flow, and par-
icle size distribution, were then compared to the actual measured
alues to determine model usefulness.

.4. Software

All of the data manipulation and PCA and PLS models were
erformed in MATLAB® (The Mathworks, inc., Natick, MA) using
ustom in-house code.

. Results and discussion

.1. The use of multivariate modeling approaches

The simplest method for predicting blend properties from indi-
idual components is to employ ideal-mixing rules to estimate each
ndividual property of the resulting blend. However, this method
as some key limitations. First, ideal-mixing fails to capture any
on-linear mixing effects (i.e. when the resultant property is not a
imple weighted average of the properties of the components) on
he properties of the blend. While this may  be applicable to some
roperties such as particle size distribution, it is unlikely to work for
thers. For example, it has been shown that the bonding and tablet-
ng indices of binary mixtures exhibited non-linear relationships

hen brittle and plastic components were blended (Wurster et al.,
999; Majuru and Wurster, 1997). Often pharmaceutical blends are
omplex mixtures that contain 5 or more individual components.
n these cases it is even more unlikely that these ideal-mixing pre-
ictions will apply. Furthermore, univariate analysis fails to capture
he correlations and interactions between the materials properties.
rom a formulation design perspective this can become problem-
tic when optimizing for a specific blend property may  result in
reating deficiencies in another.

Therefore a new, multivariate, “weighted-scores PLS” approach
as developed which allows for simultaneous prediction of several
roperties of a new blend. This was accomplished by first trans-
orming the data in X using PCA. This transformation was performed
or two purposes: (1) to capture the complex relationship (correla-
ion structure) between properties in the X space and (2) to allow
or all materials (individual components and blends) to be posi-
ioned in a multivariate “design-space”. In this case, when a new

aterial is tested it can be readily compared to previous experi-
nce. This will allow the formulator to identify if a new material can
e modeled based on past data as well as determine if it needs to
e considered “special-case” for formulation development. These
pecial-case materials, which fall outside of previous experience,
ay  require specialized excipients or processing procedures to

roduce robust dosage forms. Following the component PCAs, the
cores were then weighted by R, prior to a PLS regression, against
he actual blend data.

Using this WSPLS approach the captured variance (R2) for the
raining dataset was found to be high (>81%). This represents a
ignificant improvement over the ideal-mixing method where the
otal R2 value was found to be 62%. The WSPLS model was also cross-
alidated by iteratively removing each blend from the dataset,
emodeling, and comparing the predictions to the measured val-
es. The resulting Q2 value was found to be very high (∼80%). This

ndicates that the predictability of this model for new blends is quite
obust. The R2 per variable for several select powder and mechan-
cal properties (Fig. 2) and the quantile particle size distribution
Fig. 3) were compared with that from ideal-mixing. This compar-

son shows the clear advantage of this multivariate approach over
deal-mixing rules. Of note, properties which are especially impor-
ant from a solid-dosage form manufacturability standpoint, such
s the pressure needed to achieve an acceptable compact (com-
nal of Pharmaceutics 418 (2011) 235– 242

pression stress), compact strength (tensile strength and BFI), and
powder flow function coefficient (FFC), are all particularly well
understood (R2 of 72–87%).

As an example, predicted vs. observed values for two material
properties, compact tensile strength and powder FFC, are shown
in Fig. 4. Excellent agreement can be seen between the model pre-
diction and the measured properties. Some observations show the
predicted values for blends where no actual measured values exist
for that particular blend. In this multivariate model missing data
was estimated through the known property correlations as cap-
tured in the PLS model loadings. This ability to handle missing
data illustrates another important advantage of using a multivari-
ate modeling approach vs. applying univariate mixing rules. This
flexibility may  be especially useful in that blend predictions are not
limited if available API quantities are not sufficient to allow for com-
plete testing. Taken together, the superior modeling performance
and flexibility afforded by using WSPLS indicates this technique
may  have improved utility for pharmaceutical formulation devel-
opment.

3.2. Prediction performance verification

Two example blend predictions were performed on formula-
tions not contained in the original training dataset. The predictions
for both formulations, the first containing 30 wt.% API-A (Table 2),
and the second containing 23 wt.% API-B (Table 3), were compared
to experimentally derived values. For each blend the predicted and
measured blend properties are shown along with the experimen-
tal error (standard deviation or replicate compacts) and prediction
error (model residuals). Furthermore, a rating category system
was applied to each property. The categories include “attribute”,
“margina”, “deficient”, and “severely deficient”. The ratings cat-
egories were developed for each property to give an indication
of processing performance for solid-dosage form development.
The particular ratings cutoffs were set based on published results
and experience with proprietary compounds and formulations.
Materials with similar ratings are considered to be similar in a
real-world manufacturing environment. As seen in both examples,
the actual and predicted values for the material properties show
good agreement. The ratings categories of the predicted and mea-
sured values differed in only two  cases. The brittle-fracture index
is classified as an attribute for the API-A blend while the actual test
exhibits marginal performance. In this case, the API performance
falls very close to the ratings category boundary. The delineation
falls within the combined prediction and experimental error. In
these cases it may  be best to identify this material as a “borderline
attribute/marginal” case. For the API-B blend the viscoelasticity is
classified to be marginal while the actual test shows the perfor-
mance to be deficient. In this case, the difference is likely due to the
relatively low predictive power for this particular property using
the model (R2 < 50%). This lack of predictability can be taken into
account by using the R2 per variable to guide prediction confidence.
Each property can be weighted by its R2 value in order to guide
formulator’s decisions. Overall, agreement with the actual blend
performance is sufficient to make development decisions without
further experimentation. The WSPLS model illustrates how an in-
silico approach can be a useful tool for understanding and predicting
real-life behavior of pharmaceutical blends.

3.3. Example application to pharmaceutical formulation
development
The blend prediction model described above was applied to
help determine initial blend formulations for a high-dose require-
ment API. Often these high-dose formulations require a balance
to be struck between API loading (wt.%) and dosage-form size. On
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Fig. 2. Captured variance (R2Y) per variable for selected blend properties using the WSPLS model (black bars) compared to simple volume weighting using ideal-mixing rules
(shaded  bars).

Fig. 3. Captured variance (R2Y) per variable for quintile particle size distribution using the WSPLS model (black bars) compared to simple volume weighting using ideal-mixing
rules  (shaded bars).

Fig. 4. Observed vs. predicted values for compact tensile strength (left) and powder flow function coefficient (right) for the 25 tested blends in WSPLS model.



240 M.A. Polizzi, S. García-Muñoz / International Journal of Pharmaceutics 418 (2011) 235– 242

Table 2
Actual and predicted properties for an immediate release formulation containing 30% API-A.

Property (unit) Experimentally determined WSPLS predicted

Value (Std dev) Rating category Value (95% CI) Rating category

Compression stress (MPa) 90.8 (2.6) Attribute 87.6 (12.5) Attribute
Ductility (MPa) 447.2 (25.6) Deficiency 590.3 (164.3) Deficient
Tensile strength (MPa) 3.5 (7.0E-3) Attribute 2.9 (0.5) Attribute
Compromised tensile strength (MPa) 2.6 (4.9E-02) Attribute 2.5 (0.5) Attribute
Brittle fracture index (none) 1.6E-01 Marginal 7.9E-02 (3.2E-02) Attribute
Bonding index (none) 7.9E-03 Marginal 4.7E-02 (1.8E-03) Marginal
Viscoelasticity (none) 8.9 Attribute 8.7 (1.9) Attribute
Flow  function coefficient (none) 5.2 Marginal 5.3 (1.1) Marginal

Table 3
Actual and predicted properties for an immediate release formulation containing 23% API-B.

Property (unit) Experimentally determined WSPLS predicted

Value (Std dev) Rating category Value (95% CI) Rating category

Compression stress (MPa) 98.5 (1.8) Attribute 95.6 (12.3) Attribute
Ductility (MPa) 386.0 (40.8) Marginal 342.1 (190.6) Marginal
Tensile strength (MPa) 2.9 (5.4E-02) Attribute 2.8 (0.4) Attribute
Compromised tensile strength (MPa) 2.8 (4.4E-08) Attribute 2.7 (0.4) Attribute
Brittle fracture index (none) 2.8E-02 Attribute 1.7E-02 (2.7E-02) Attribute
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API loadings of >50% the predicted blend flow characteristics were
no longer considered acceptable using the standard rating system
(Mullarney and Leyva, 2009). Under these deficient flow conditions
manufacturability of the tablet may  suffer due to material hang-ups
Bonding index (none) 7.6E-03 

Viscoelasticity (none) 22.9 

Flow  function coefficient (none) 6.4 

ne hand, at high API loadings the blend properties may  become
eficient due to the undesirable characteristics of the API being
rominent. This may  result in poor robustness of the manufacturing
rocess and unacceptable attributes of the drug product and inter-
ediates such as increased potency variability, powder hang-ups,

r softer tablets. However, decreasing the API loading is not always
ossible due to limits on tablet/capsule sizes. Equally, oversized
ral dosage forms are not desirable as they can become difficult
o swallow and may  affect patient compliance, especially in par-
icular populations such as young children and elderly individuals.
chieving the correct balance of these concerns may  require pro-
ucing and testing various formulations with a range of API loadings
o achieve both acceptable blend properties and dosage form sizes.
t the same time, especially in early drug-product development,

t is important to reduce API use by minimizing experimentation.
n these situations the use of in-silico predictions to facilitate rapid
ormulation design may  be particularly useful.

In this example case, the WSPLS approach described above was
pplied to a high-dose (600 mg)  direct compression (DC) tablet for-
ulation. The goal was to screen potential formulations in-silico to

elp guide drug-product development without additional experi-
entation and material usage. The API was first tested using <50 g

f material to determine the key compact, flow, and particle size
aterial properties. Complete mechanical property characteriza-
ion was not possible due to limited material availability. However,
t was determined that the primary concern for this particular API

as the deficient flow characteristics (FFC, Table 4). This prop-
rty is considered particularly important for a formulation such as

able 4
PI mechanical and flow properties for API-C.

Property API properties

Compression stress (MPa) 72.86 (Attribute)
Ductility (MPa) NA
Tensile strength (MPa) 1.08 (Marginal)
Compromised tensile strength (MPa) 0.62 (Marginal)
Brittle fracture index (none) 3.70E-01 (Deficient)
Bonding index (none) NA
Viscoelasticity (none) NA
Flow function coefficient (none) 4.20 (Deficient)
arginal 4.6E-03 (1.1E-03) Marginal
eficient 13.7 (1.8) Marginal
ttribute 6.9 (1.8) Attribute

this since the DC process relies heavily on acceptable blend flow
to achieve proper tablet weight control and content uniformity.
Therefore, it was critical to gauge the upper limit of achievable
API loading that would still result in acceptable blend FFC. This
maximum loading would strike the best possible balance between
manufacturability and tablet size.

The predicted mechanical properties of various formulations
of API-C are shown in Table 5. As expected, the properties gen-
erally trend towards those of the pure API with increased loading
in the formulation. It is important to note, that while the prediction
errors seem significant compared to the measurement (generally
15–30%), the values are small relative to the differences in rating
categories (as seen in Tables 2 and 3). Therefore, this model is a
useful tool to guide formulation decision which produce desirable
blend properties. As expected, the predicted FFC values were found
to be less desirable with increasing API loading as shown in Fig. 5. At
Fig. 5. Predicted FFC values for formulations with API loadings from 1 to 60 wt.%
API-C along with the actual measured value of the pure API (shown at 100 wt.%) and
ratings categories. Error bars represent ±1 standard deviation.
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Table 5
Comparison of predicted properties at various API loadings of API-C.

Property API-C loading (wt.%.) Prediction error

1% 5% 10% 20% 30% 40% 50% 60%

Compression stress (MPa) 89.3 87.8 85.8 82.0 78.4 75.0 71.7 68.5 ± 12.46
Ductility (MPa) 646.7 636.2 622.6 596.1 570.8 546.5 523.1 500.6 ± 164.28
Tensile strength (MPa) 2.9 2.9 2.8 2.7 2.6 2.5 2.4 2.3 ± 0.54
Compromised tensile strength (MPa) 2.65 2.59 2.51 2.36 2.21 2.07 1.94 1.81 ± 0.48
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Brittle fracture index (none) 6.47E-02 6.77E-02 7.19E-02 

Bonding index (none) 4.48E-03 4.45E-03 4.38E-03 

Viscoelasticity (none) 8.49 8.56 8.64 

uring processing such as during hopper discharge. Furthermore,
he poor flow of the DC blend into the tablet press die may result
n inconsistent fill weights and produce tablets with high weight
ariability. Based on this analysis, a 40% API loading formulation
as chosen based on the predicted FFC with consideration for the
odel prediction error. At this loading drug product development

an proceed with good flow during manufacturing, while mini-
izing the required tablet size. This 40% loading translates to a
inimum tablet weight of 1500 mg  for this high dose DC formula-

ion. Importantly the in-silico model yielded this conclusion rapidly
ithout any additional experimentation or API usage. This exam-
le illustrates the utility of how model-based formulation design
an be used to focus development efforts and result in minimized
xperimentation time and related resources.

. Conclusions

A novel method for in-silico prediction of the performance of
harmaceutical powder blends has been developed. A two-step,
ultivariate modeling approach was created using historical phys-

cal data of APIs, excipients, and multi-component blends. The
hysical properties for each individual component were first trans-
ormed using a PCA technique to place them in a multivariate design
pace and capture property correlations. The scores from these PCA
odels were then weighted by the blending ratios prior to PLS

egression versus actual measured blend properties. This method
roduced a complete prediction of all the material properties
imultaneously which was shown to be superior to the predic-
ion performance observed when applying linear ideal-mixing. An
xample of the application of this model was shown for a high-dose
ormulation where an optimal API loading was determined which
est balanced the need for satisfactory blend performance along
ith acceptable tablet size. The ability to perform these formula-

ion design analyses without the need for experimentation can be
specially useful when API resources are limited (i.e. during early
rug-product development). This approach represents a potential
pplication of QbD principles to the selection of incoming materials
nd formulation through in-silico modeling.

In the future, additional API, excipient, and blend data will be
dded to the model as it is created. This will serve to further broaden
he range of experience captured in the model while reducing pre-
iction error. Additionally, an optimizer function will be added to
his model whereby excipient types and concentrations will be cho-
en based on target blend properties for a given API. Since different
osage forms may  have different product requirements (e.g. cap-
ule vs. tablet, immediate vs. controlled release) the optimizer will
llow for the target blend characteristics to be tailored to the spe-
ific goals of each project. Constraints can be added to ensure that
aterials that impart required functionality to the dosage form will
e included. For example, the requirement that disintegrant and
ubricant are used in the formulation will be built into the con-
traints so that dissolution and anti-sticking performance will not
e compromised. Additional constraints can be added to choose
E-02 8.79E-02 9.54E-02 1.03E-01 1.10E-01 ± 3.20E-02
E-03 4.12E-03 3.99E-03 3.87E-03 3.76E-03 ± 1.83E-03

 8.93 9.06 9.19 9.32 ± 1.92

preferred materials if the excipients chosen are not acceptable from
a supply standpoint. With this system in place the development
of new, more ideal, formulations can be achieved with little to no
experimentation and less than 50 g of API.
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